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1 Introduction

1.1 Overview of this tutorial

This tutorial provides instructions on how to perform exploratory secondary analysis on single cell 3' RNA-seq data
produced by the 10x Genomics™ Chromium™ Platform, and processed by the Cell Ranger™ pipeline. We illustrate
an example workflow using peripheral blood mononuclear cells (PBMCs) from a healthy donor, using two data sets:
pbmc3k and pbmc6k (from the same donor) released by 10x Genomics™ :

http://support.10xgenomics.com/single-cell/datasets/pbmc3k
http://support.10xgenomics.com/single-cell/datasets/pbmc6k

In this tutorial, you will learn how to:
e Load processed data from the Cell Ranger™ pipeline or public data provided by 10x Genomics™
e Perform unsupervised clustering for de novo cell-type discovery

e Visualize clustering of single cells and cluster-specific gene expression signatures

e Combine data from multiple experiments



1.2 Additional resources

You can learn more about the Cell Ranger™ pipeline here:
http://support.10xgenomics.com/single-cell/software/pipelines/latest/what-is-cell-ranger

A larger number of other publicly available single cell data sets released by 10x Genomics™ are available here:
http://support.10xgenomics.com/single-cell/datasets

If you have any questions about the data and the analysis, please contact support@10xgenomics.com.

2 Getting Started

2.1 Installing Cell Ranger R Kit

You can follow the instructions at the link below to install R Kit and its dependencies:

http://support.10xgenomics.com/single-cell/software/pipelines/latest/rkit

2.2 Loading gene expression data for secondary analysis

The Chromium™ Cell Ranger™ pipeline produces processed gene-barcode matrices and primary results. By specifiying
the pipeline output directory (or pipestance path), you can use the R kit to load these pipeline results into your local
R environment. You can load the pipeline data by specifying a pipestance path in R as follows.

cellranger_pipestance_path <- "/path/to/your/pipeline/output/directory"
gbm <- load_cellranger_matrix(cellranger_pipestance_path)
analysis_results <- load_cellranger_analysis_results(cellranger_pipestance_path)

Alternatively, you can download the publicly available data to a local path using the download_sample function and
treat this local path as your pipestance path.

pipestance_path <- "/path/to/your/local/directory/for/pbmc3k"

download_sample (sample_name="pbmc3k",sample_dir=pipestance_path,
host="https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/")

gbm <- load_cellranger_matrix(pipestance_path)

analysis_results <- load_cellranger_analysis_results(pipestance_path)

The variable gbm is an object based on the Bioconductor ExpressionSet class that stores the barcode filtered gene
expression matrix and metadata, such as gene symbols and barcode |IDs corresponding to cells in the data set. The
gene expression values, gene information and cell barcodes can be accessed using:

exprs (gbm)
fData(gbm)
pData(gbm)

The variable analysis_results contains pre-computed results for principle component analysis (PCA) dimensional
reduction, t-SNE (t-Distributed Stochastic Neighbor Embedding) projection, and k-means clustering. Because each cell
is represented by a high-dimensional gene expression profile, one way to visualize cell-to-cell similarity is by reducing
the data set to a two dimensional representation. There are many dimension reduction methods available for 2-D
visualization. Here we include implementations of two popular approaches, PCA and t-SNE, with pre-computed results
stored in analysis_results.

For instance, you can access the t-SNE projection and plot the cells colored by UMI counts as follows.



tsne_proj <- analysis_results$tsne
visualize_umi_counts(gbm,tsne_proj[c("TSNE.1","TSNE.2")],limits=c(3,4) ,marker_size=0.05)
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Figure 1: t-SNE projection where each cell is colored by logl0 of UMI counts. Color scale represents logl0 of UMI
counts.

Each point in the scatter plot represents a cell in the coordinates specified by the two t-SNE components. The
color of each point plotted by visualize_umi_counts (Figure 1) indicates the total number of UMIs for each cell,
and these count values are displayed in logl0 scale.

Cells with similar expression profile tend to appear closer in the 2-D space, so you may already see some structures
in the data. However, to identify what the structures represent, you will need to rely on the gene signatures that each
cell expresses to draw meaningful insights from the data. Instead of using raw UMI counts for downstream differential
gene analysis, we recommend that you filter unexpressed genes, normalize the UMI counts for each barcode, and use
the log-transformed gene-barcode matrix. After transformation, the gene-barcode matrix contains 16634 genes for
2700 cells.

use_genes <- get_nonzero_genes (gbm)

gbm_bcnorm <- normalize_barcode_sums_to_median(gbm[use_genes,])
gbm_log <- log_gene_bc_matrix(gbm_bcnorm,base=10)

print (dim(gbm_log))

## [1] 16634 2700

3 Visualizing signatures of known gene markers

One way to identify different cell types is by expression of specific genes in cells. You can visualize expression values
of a set of genes to identify cells where particular genes are up-regulated. Here, we show how to simultaneously plot
the expression of 6 gene markers, one for each subplot using the visualize_gene_markers function.



genes <- c("CD79A","NKG7","CD3D","CST3","CD8A","PF4")
tsne_proj <- analysis_results$tsne
visualize_gene_markers(gbm_log,genes,tsne_proj[c("TSNE.1","TSNE.2")],limits=c(0,1.5))
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Figure 2: t-SNE projection where each cell is colored by normalized expression of the marker in the cell. Color scale
represents the normalized expression of the marker.

Because the input matrix gbm_log is already normalized and log10-transformed, the color indicates the UMI counts
for each gene under logl0 scale (Figure 2). The specific gene markers already reveal cell types such as B cells, T cells,
and natural killer (NK) cells. As expected, the cell-type-specific markers we have chosen are mostly unique to cells
that are close together in the 2-D t-SNE projection.

4 Unbiased analysis using clustering results

4.1 Visualizing clustering results

For some data sets, de novo cell-type discovery may be desired as prior knowledge of relevant marker genes can be
limited or one may not want to introduce biases. In these cases it is useful to use unsupervised analysis to first
algorithmically specify groupings of cells using the full data set. This can be achieved by applying any clustering
methods on the loaded gene expression matrix exprs(gbm) or the matrix in a reduced dimension space. In our
implementation, for instance, we apply k-means clustering on the top 10 principle components of the gene expression
matrix (after log-transformation, centering and scaling).

Because k-means clustering requires a specified number of clusters in the data set but the number of clusters
in a data set may not be known a priori, it is helpful to consider multiple values of k. The output data from Cell
Ranger™ includes the pre-computed cluster labels sweeping k& from 2 to 10. So you can quickly visualize results for
different values of k and pick the one that agrees with your intuition (Figure 3). Here each cell is colored by its cluster
ID.



n_clu <- 2:10

km_res <- analysis_results$kmeans # load pre-computed kmeans results
clu_res <- sapply(n_clu, function(x) km_res[[paste(x,"clusters",sep="_")]1]$Cluster)
colnames(clu_res) <- sapply(n_clu, function(x) paste("kmeans",x,sep="."))

visualize_clusters(clu_res,tsne_proj[c("TSNE.1","TSNE.2")])
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Figure 3: t-SNE projection where each cell is colored by cluster assigned by kmeans clustering.
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4.2 Analyzing cluster specific genes

ID on the right

Using these integer cluster labels (or integer labels generated by any clustering algorithm), you can now perform
differential gene analysis to identify gene markers that are specific to a particular cell population. For this example,
we focus on the k-means clustering result above with 5 clusters (Figure 4). Standard statistical tests can be applied
to identify which genes are most differentially expressed across different cell types.



example_K <- 5 # number of clusters (use "Set3" for brewer.pal below if exzample_K > 8)
example_col <- rev(brewer.pal(example_K,"Set2")) # customize plotting colors

cluster_result <- analysis_results$kmeans[[paste(example_K,"clusters",sep="_")]]
visualize_clusters(cluster_result$Cluster,tsne_proj[c("TSNE.1","TSNE.2")],colour=example_col)
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Figure 4: t-SNE projection where each cell is colored by cluster assigned by kmeans clustering. ID on the right
represents the cluster ID.

You can compare the mean expression between a class of cells and the remaining ones, and then prioritize genes by
how highly expressed they are in the class of interest. The function prioritize_top_genes identifies markers that
are up-regulated in particular clusters of cells. Note that there are many other ways to identify cluster-specific genes.
The approach used here is quick when looking for cluster-specific genes among ~ 20k candidate genes.

# sort the cells by the cluster labels

cells_to_plot <- order_cell_by_clusters(gbm_log,cluster_result$Cluster)

# order the genes from most up-regulated to most down-regulated in each cluster
prioritized_genes <- prioritize_genes(gbm_log,cluster_result$Cluster,"mean_diff")

## Comparing Cluster 1 against the other clusters...
## Comparing Cluster 2 against the other clusters...
## Comparing Cluster 3 against the other clusters...
## Comparing Cluster 4 against the other clusters...
## Comparing Cluster 5 against the other clusters...
Now that the genes for each cell type are prioritized, you can output the top genes specific to each cluster to a
local folder. In this case, we output all the top 10 gene symbols for the 5 clusters to file.

output_folder <-"/path_to_your_local_folder/pbmc_data_public/pbmc3k/gene_sets"
write_cluster_specific_genes(prioritized_genes,output_folder,n_genes=10)

In addition, you can use the prioritized genes to plot a heat-map where the top three most up-regulated genes in
each cluster are displayed. In addition, you can order the cells according to the cell IDs produced by k-means clustering
to make the cell population signatures more apparent (Figure 5).



# create values and azis annotations for pheatmap
gbm_pheatmap (gbm_log,prioritized_genes,cells_to_plot,
n_genes=3, colour=example_col,limits=c(-1,2))
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Figure 5: Heatmap of scaled expression of top 3 genes (row) in each cell (column). The horizontal and vertical bars
around the heat map represents cluster ID assigned by kmeans clustering. Color scale represents scaled expression of
the gene.

Notice that the top three genes for each cluster already give us an idea on the identity of each cluster. For instance,
e LYZ is among the top 3 most expressed genes in Cluster 1, suggesting a population of monocytes;

e CD3D is among the top 3 most expressed genes in Cluster 2, suggesting a population of T cells;

e NKG7 is among the top 3 most expressed genes in Cluster 3, suggesting a population of NK cells;

e PF4 is among the top 3 most expressed genes in Cluster 4, suggesting a population of megakaryocytes;

e CD74 is among the top 3 most expressed genes in Cluster 5, suggesting a population of B cells.

You can also find out the size of each cluster. For example, about 13% cells were classified as B cells in this sample.

cell_composition(cluster_result$Cluster,
anno=c ("monocytes","T cells","NK cells","megakaryocytes","B cells"))

## Cell composition:

## 1 2 3 4 5

## annotation "monocytes" "T cells" "NK cells" "megakaryocytes" "B cells"
## num_cells "685" "1391" "264" 12" "'348"

## proportion "0.2537" "0.51519" "0.09778" "0.00444" "0.12889"

5 Analyzing multiple data sets

5.1 Merging multiple pbmc data sets

It is very common to pool data from different lanes of a 10x run or even different samples when analyzing single cell
data sets. Because the output of these experiments will involve multiple Cell Ranger runs (one per Cell Ranger run),
the pre-computed information such as t-SNE projections and k-means clustering need to be re-computed after pooling
different data sets. Here we demonstrate how to merge two PBMC data sets where 2 libraries (pbmc3k and pbmc6k)
were made and sequenced on different sequencers. You can download the data and store them in the format as you
did for the single PBMC example and specify the path for each sample.



cellranger_pipestance_path_1 <- "/path/to/your/pipeline/output/directoryl"
cellranger_pipestance_path_2 <- "/path/to/your/pipeline/output/directory2"
gbml <- load_cellranger_matrix(cellranger_pipestance_path_1)
gbm2 <- load_cellranger_matrix(cellranger_pipestance_path_2)

Alternatively, you can download the two datasets using the download_sample function. Notice that you will need
to set the option 1ite=FALSE to download necessary molecule information in order to merge multiple data sets. The
additional molecule information file can be a few hundred megabytes, and hence downloading the sample will take
longer.

host <- "https://s3-us-west-2.amazonaws.com/10x.files/samples/cell/"
pipestance_path_1 <- "/path/to/your/local/directory/for/pbmc6k"
pipestance_path_2 <- "/path/to/your/local/directory/for/pbmc3k"
download_sample("pbmc6k",pipestance_path_1,host,lite=FALSE)
download_sample("pbmc3k",pipestance_path_2,host,lite=FALSE)

gbml <- load_cellranger_matrix(pipestance_path_1)

gbm2 <- load_cellranger_matrix(pipestance_path_2)

To merge multiple data sets, you can simply merge multiple gbm objects and re-normalize using the function:
concatenate_gene_bc_matrices. However, we recommend equalizing read depths between samples before merging
to reduce the batch effect that might have been introduced through sequencing. You can use equalize_gbm to
sub-sample a list of gbm objects to generate new data sets with depth equal to that of the sample with the least reads.
You can also apply any other batch effect removal strategy on this list of gbm objects to account for the differences
across gene expression matrices in your study design. The cell pipestance indices are stored as batch labels using
merged_ID.

set.seed(0)

gbm_list <- list(gbml, gbm2)

gbm_list <- lapply(gbm_list,load_molecule_info) # load sample molecule information
gbm_list_equalized <- equalize_gbms(gbm_list) # equalize the gene-barcode matrices
merged_gbm <- concatenate_gene_bc_matrices(gbm_list_equalized)

merged_ID <- unlist(lapply(l:length(gbm_list), function(x) rep(x,dim(gbm_list[[x]])[2]1)))

5.2 Re-running PCA, t-SNE and k-means clustering

When two different samples are merged, you need to recompute the the PCA dimension reduction, t-SNE projection,
and k-means clustering (or other methods of your choice).

set.seed(0)

n_clust <- 5

pca_result <- run_pca(merged_gbm)

tsne_result <- run_tsne(pca_result)

kmeans_result <- run_kmeans_clustering(pca_result,k=n_clust)

# ancluded re-named cell IDs, t-SNE and k-means result in a merged data frame

merged_tsne_clust <- data.frame(Barcode=as.factor(1l:tsne_result$N),
TSNE. 1=tsne_result$Y[,1],TSNE.2=tsne_result$Y[,2],
Cluster=kmeans_result$cluster,Batch=merged_ID)

To further investigate potential batch effects in the data, we recommend coloring the same projection by batch
labels (Figure 6). This is because clustering results can sometimes reflect technical effects depending on the nature
of the study. In our case, the two samples consist of healthy PBMCs from the same donor, and the two batches are
well-mixed in the data. In other cases where the batches are not limited to technical effects, it is reasonable to see
some cell populations seperated by batches.



p_c <- visualize_clusters(merged_tsne_clust$Cluster,merged_tsne_clust[c("TSNE.1","TSNE.2")],
title="k-means clustering labels")

p_b <- visualize_clusters(merged_tsne_clust$Batch,merged_tsne_clust[c("TSNE.1","TSNE.2")],
title="batch labels")

multiplot(p_c, p_b, cols=2)
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Figure 6: t-SNE projection where (Left) each cell is colored by cluster assigned in kmeans clustering, (Right) each cell
is colored by sample ID, where 1 represents pbmc3k, and 2 represents pbmc6k.

Finally, you can repeat the analysis shown in the previous section on merged_gbm to identify cluster specific genes
from the new clustering result.

6 Session Info

sessionInfo()

## R version 3.1.1 (2014-07-10)
## Platform: x86_64-pc-linux-gnu (64-bit)

##

## locale:

## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

## [6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C

## [9] LC_ADDRESS=C LC_TELEPHONE=C

## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

## attached base packages:

## [1] parallel stats graphics grDevices utils datasets methods
## [8] base

#i#

## other attached packages:

## [1] pheatmap_1.0.8 knitr_1.13 data.table_1.9.6

## [4] rhdf5_2.14.0 rjson_0.2.15 cellrangerRkit_0.99.0
## [7] Rmisc_1.5 plyr_1.8.4 lattice_0.20-33

## [10] bit64_0.9-5 bit_1.1-12 ggplot2_2.1.0

## [13] RColorBrewer_1.1-2 Biobase_2.24.0 BiocGenerics_0.10.0
## [16] Matrix_1.2-6

##



##
##
Hit
#it
#it
##

loaded via a namespace (and not attached):
colorspace_1.2-6 digest_0.6.9

[1]
[5]
[9]
[13]
[17]

chron_2.3-47
formatR_1.4
irlba_2.0.0
Rcpp_0.12.5
stringi_1.1.1

grid_3.1.1
labeling 0.3
reshape2_1.4.1
stringr_1.0.0

gtable_0.2.0
magrittr_1.5
Rtsne_0.10
tools_3.1.1
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evaluate_0.9
highr_0.6
munsell_0.4.3
scales_0.4.0
zlibbioc_1.10.0
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